3.6.28 \(\int \frac {\sec ^3(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [528]

Optimal. Leaf size=227 \[ \frac {(19 A-75 B+163 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(A-9 B+17 C) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(21 A-93 B+197 C) \tan (c+d x)}{24 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(15 A-39 B+95 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{48 a^3 d} \]

[Out]

1/32*(19*A-75*B+163*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*(A-
B+C)*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-1/16*(A-9*B+17*C)*sec(d*x+c)^2*tan(d*x+c)/a/d/(a+a*sec(d
*x+c))^(3/2)-1/24*(21*A-93*B+197*C)*tan(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)+1/48*(15*A-39*B+95*C)*(a+a*sec(d*x
+c))^(1/2)*tan(d*x+c)/a^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.47, antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4169, 4104, 4095, 4086, 3880, 209} \begin {gather*} \frac {(19 A-75 B+163 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(15 A-39 B+95 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{48 a^3 d}-\frac {(21 A-93 B+197 C) \tan (c+d x)}{24 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {(A-B+C) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {(A-9 B+17 C) \tan (c+d x) \sec ^2(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((19*A - 75*B + 163*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*
d) - ((A - B + C)*Sec[c + d*x]^3*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((A - 9*B + 17*C)*Sec[c + d*
x]^2*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) - ((21*A - 93*B + 197*C)*Tan[c + d*x])/(24*a^2*d*Sqrt[a
 + a*Sec[c + d*x]]) + ((15*A - 39*B + 95*C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(48*a^3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4095

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)),
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {\int \frac {\sec ^3(c+d x) \left (a (A+3 B-3 C)+\frac {1}{2} a (3 A-3 B+11 C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(A-9 B+17 C) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sec ^2(c+d x) \left (-a^2 (A-9 B+17 C)+\frac {1}{4} a^2 (15 A-39 B+95 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(A-9 B+17 C) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(15 A-39 B+95 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{48 a^3 d}+\frac {\int \frac {\sec (c+d x) \left (\frac {1}{8} a^3 (15 A-39 B+95 C)-\frac {1}{4} a^3 (21 A-93 B+197 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{12 a^5}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(A-9 B+17 C) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(21 A-93 B+197 C) \tan (c+d x)}{24 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(15 A-39 B+95 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{48 a^3 d}+\frac {(19 A-75 B+163 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(A-9 B+17 C) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(21 A-93 B+197 C) \tan (c+d x)}{24 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(15 A-39 B+95 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{48 a^3 d}-\frac {(19 A-75 B+163 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(19 A-75 B+163 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(A-9 B+17 C) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(21 A-93 B+197 C) \tan (c+d x)}{24 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(15 A-39 B+95 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{48 a^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 25.49, size = 7197, normalized size = 31.70 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1153\) vs. \(2(200)=400\).
time = 0.20, size = 1154, normalized size = 5.08

method result size
default \(\text {Expression too large to display}\) \(1154\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/192/d*(-1+cos(d*x+c))^2*(57*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c
))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^3*sin(d*x+c)-225*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^3*sin(d*x+c)+489*C*ln(
-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3
/2)*cos(d*x+c)^3*sin(d*x+c)+171*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+
c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^2*sin(d*x+c)-675*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^2*sin(d*x+c)+1467*C*l
n(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^
(3/2)*cos(d*x+c)^2*sin(d*x+c)+171*A*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c
)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-675*B*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)+1467*C*cos
(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(
d*x+c)))^(3/2)*sin(d*x+c)+57*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))
*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-225*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+c
os(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)+489*C*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-108*A*cos(d*x
+c)^4+588*B*cos(d*x+c)^4-1196*C*cos(d*x+c)^4-48*A*cos(d*x+c)^3+432*B*cos(d*x+c)^3-816*C*cos(d*x+c)^3+156*A*cos
(d*x+c)^2-636*B*cos(d*x+c)^2+1372*C*cos(d*x+c)^2-384*B*cos(d*x+c)+768*C*cos(d*x+c)-128*C)*(a*(1+cos(d*x+c))/co
s(d*x+c))^(1/2)/sin(d*x+c)^5/cos(d*x+c)/a^3

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]
time = 2.98, size = 593, normalized size = 2.61 \begin {gather*} \left [-\frac {3 \, \sqrt {2} {\left ({\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )^{4} + 3 \, {\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (27 \, A - 147 \, B + 299 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (39 \, A - 255 \, B + 503 \, C\right )} \cos \left (d x + c\right )^{2} - 32 \, {\left (3 \, B - 5 \, C\right )} \cos \left (d x + c\right ) - 32 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{192 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right )\right )}}, -\frac {3 \, \sqrt {2} {\left ({\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )^{4} + 3 \, {\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (19 \, A - 75 \, B + 163 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (27 \, A - 147 \, B + 299 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (39 \, A - 255 \, B + 503 \, C\right )} \cos \left (d x + c\right )^{2} - 32 \, {\left (3 \, B - 5 \, C\right )} \cos \left (d x + c\right ) - 32 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{96 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/192*(3*sqrt(2)*((19*A - 75*B + 163*C)*cos(d*x + c)^4 + 3*(19*A - 75*B + 163*C)*cos(d*x + c)^3 + 3*(19*A -
75*B + 163*C)*cos(d*x + c)^2 + (19*A - 75*B + 163*C)*cos(d*x + c))*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*co
s(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x
+ c)^2 + 2*cos(d*x + c) + 1)) + 4*((27*A - 147*B + 299*C)*cos(d*x + c)^3 + (39*A - 255*B + 503*C)*cos(d*x + c)
^2 - 32*(3*B - 5*C)*cos(d*x + c) - 32*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x
+ c)^4 + 3*a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c)), -1/96*(3*sqrt(2)*((19*A - 75*B
 + 163*C)*cos(d*x + c)^4 + 3*(19*A - 75*B + 163*C)*cos(d*x + c)^3 + 3*(19*A - 75*B + 163*C)*cos(d*x + c)^2 + (
19*A - 75*B + 163*C)*cos(d*x + c))*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)
/(sqrt(a)*sin(d*x + c))) + 2*((27*A - 147*B + 299*C)*cos(d*x + c)^3 + (39*A - 255*B + 503*C)*cos(d*x + c)^2 -
32*(3*B - 5*C)*cos(d*x + c) - 32*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^
4 + 3*a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**3/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.81, size = 302, normalized size = 1.33 \begin {gather*} \frac {\frac {{\left ({\left (3 \, {\left (\frac {2 \, \sqrt {2} {\left (A a^{5} - B a^{5} + C a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} {\left (7 \, A a^{5} - 15 \, B a^{5} + 23 \, C a^{5}\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {4 \, \sqrt {2} {\left (15 \, A a^{5} - 75 \, B a^{5} + 167 \, C a^{5}\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {3 \, \sqrt {2} {\left (11 \, A a^{5} - 83 \, B a^{5} + 155 \, C a^{5}\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {3 \, \sqrt {2} {\left (19 \, A - 75 \, B + 163 \, C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{96 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/96*(((3*(2*sqrt(2)*(A*a^5 - B*a^5 + C*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^6*sgn(cos(d*x + c))) + sqrt(2)*(7*A*a^5
 - 15*B*a^5 + 23*C*a^5)/(a^6*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 - 4*sqrt(2)*(15*A*a^5 - 75*B*a^5 + 167
*C*a^5)/(a^6*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 3*sqrt(2)*(11*A*a^5 - 83*B*a^5 + 155*C*a^5)/(a^6*sgn
(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)) - 3
*sqrt(2)*(19*A - 75*B + 163*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/
(sqrt(-a)*a^2*sgn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________